NES is committed to providing safe, reliable electric service at a reasonable cost for all of our Customers. These guidelines provide direction for activities relating to providing electric service to all classes of Customers as well as activities related to the electric system.
Table of Contents

Contents

1.0 INTRODUCTION ... 1

2.0 DESCRIPTION OF CUSTOMER’S INSTALLATION .. 1

3.0 STANDARD AND NON-STANDARD SERVICE .. 2

4.0 SERVICE POINT ... 2

5.0 NETWORK SERVICE CONNECTION REQUIREMENTS ... 3

6.0 TEMPORARY SERVICE .. 4

7.0 METERING .. 5

8.0 SECURITY OF SERVICE ENTRANCE .. 5

9.0 EMERGENCY POWER GENERATION SYSTEMS ... 5

10.0 ALTERATIONS OR ADDITIONS TO CUSTOMER’S INSTALLATION .. 5

11.0 MODIFICATION OF EXISTING NETWORK INFRASTRUCTURE .. 5

12.0 RECOMMENDATION FOR INSTALLING DISTRIBUTED GENERATION ON THE DOWNTOWN NETWORK SYSTEM .. 6

APPENDIX A: GLOSSARY .. 7

APPENDIX B: REVISION HISTORY .. 9
INTRODUCTION

1.1 The Nashville Electric Service (NES) Downtown Underground Network Secondary Services Guidelines is the governing document of guidelines for services within the Downtown Underground Network Service Area.

1.2 The word “Customer” in this document refers to the property owner or developer. Many steps will actually be completed by consultants, contractors, or electricians, but the ultimate responsibility rests with the Customer.

1.3 NES shall provide either grid network or spot network service within the network service area. The type of service provided will depend upon the Customer’s electrical load characteristics. This document presents the requirements for both the grid network and spot network services.

1.4 Since the network service area is a critical growth and transition area, the Customer is required to contact NES Energy Services Engineering (ESE) before planning either a new service or changes to an existing service within the network service area. In this area, electric supply lines and equipment are installed in a conduit system below congested streets and sidewalks. Alterations and additions to this system generally require a great deal of time.

1.5 A glossary is included in Appendix A. Terms included in the glossary are in italics when they appear in this document.

DESCRIPTION OF CUSTOMER’S INSTALLATION

2.1 The Customer shall furnish ESE with a description of the Customer’s new installation. This information is necessary to enable NES to determine the types and methods of service for which the Customer’s installation may qualify.

2.2 At a minimum, the following items shall be furnished for each installation.

(a) Site Plan
(b) Power Distribution Diagram
(c) Service Load Calculations

2.3 Long lead times for network equipment may affect the customer’s service date. NES shall not place an order for equipment until the Customer has made a formal request, provided the power distribution diagram and service load calculations, and if necessary executed a power contract.

2.4 A Residential New Business Agreement (“contract”) will be required for residential projects before construction can begin.

2.5 The Customer should not proceed with construction until service voltage, service point and other service requirements have been confirmed by NES Customer Engineering (CE).

2.6 Any changes made to the information originally submitted will likely delay the service date, and require NES and Customer facilities to be redesigned.
3.0 STANDARD AND NON-STANDARD SERVICE

3.1 STANDARD AVAILABLE NETWORK SECONDARY VOLTAGES AND MAXIMUM ALLOWABLE SERVICE EQUIPMENTAMPACITY

3.1.1 125-volt service, 1-phase, 2-wire, grid network, Maximum allowable service equipment ampacity: 60A.

3.1.2 125/216-volt service, 1-phase, 3-wire, grid network, Maximum allowable service equipment ampacity: 125A.

3.1.3 216Y/125-volt service, 3-phase, 4-wire, grid network, Maximum allowable service equipment ampacity: 800A (unless NES determines additional capacity is available).

3.1.4 216Y/125-volt service, 3-phase, 4-wire, spot network, Maximum allowable service equipment ampacity: 4,000A.

3.1.5 480Y/277-volt service, 3-phase, 4-wire, spot network, Maximum allowable service equipment ampacity: 10,500A. To qualify for this service voltage, the demand estimated by ESE must be greater than or equal to 500kW.

3.2 NES shall provide one service voltage to a building or structure in the network service area.

3.3 New services shall be installed underground in the network service area.

3.4 The Customer shall contact CE to determine the available fault current at the service point.

3.5 The Customer is required to maintain a balanced load such that the difference in current flow between the highest and lowest phase does not exceed 10%.

3.6 For special services and voltages other than standard voltages, the Customer shall consult with ESE regarding the form and type of service desired.

3.6.1 The Customer should not proceed with the purchase of equipment or wiring until service requirements have been confirmed by CE.

3.6.2 NES will furnish information in writing on the character of service available, the location of NES' lines, and the ability of NES to meet special requirements.

3.6.3 Nothing contained in this guide shall bind NES to provide such special service.

4.0 SERVICE POINT

4.1 The service point shall be where electricity is delivered to the Customer by NES. The service point is defined by the following conditions unless redefined by written agreement.

4.1.1 The service point for grid network services shall be at the meter base or service equipment as long as it is located within five feet (5’) of the conduit penetration into the building. If the distance is greater than five feet (5’), the service point shall be the NES collector plate in the handhole, manhole, or vault specified by CE. The location of conduit penetration into the building shall be specified by CE.

4.1.2 The service point for spot network services shall be the NES collector plate in the vault or manhole specified by CE.
4.2 NES shall provide one service point to a building or structure in the network service area.

4.3 WORK BEYOND THE SERVICE POINT

4.3.1 The Customer is responsible for work beyond the service point.

4.3.2 NES shall terminate cables at NES collector plates and meter bases. The Customer shall terminate cables at the service equipment.

5.0 NETWORK SERVICE CONNECTION REQUIREMENTS

5.1 GRID NETWORK SERVICE REQUIREMENTS

5.1.1 The grid network Customer shall design, furnish, install, and maintain the service entrance from the service point to the Customer’s service equipment.

5.1.2 The Customer is required to provide one duct per run of cable, plus one spare duct, from the service equipment to the NES handhole, manhole, or vault specified by CE. Customer shall coordinate installation of conduit with NES Construction Crews. NES shall terminate conduit in NES handhole, manhole, or vault.

5.1.3 Service Entrance Cable

(a) Service entrance cables shall be copper with insulation rated for wet locations and a temperature rating of at least 90°C.

(b) Cables shall be 4/0 AWG unless otherwise specified in writing by CE.

(c) Customer shall coordinate the installation of cables with NES Network Crews. Customer shall not open or enter NES handhole, manhole, or vault.

(d) When service entrance cables exceeding 100 feet are paralleled, NES shall furnish cable limiter type fuses to be installed on each end of each service entrance phase cable. The Customer shall install these fuses at the service equipment, and NES shall install fuses at the service point. Customer may contact CE to obtain fuse details.

5.1.4 Service equipment shall be capable of interrupting the available fault current.

5.2 SPOT NETWORK SERVICE REQUIREMENTS

5.2.1 The spot network Customer shall design, furnish, install, and maintain primary conduit, vault, and secondary service entrance per NES requirements.

5.2.2 Primary Conduit

(a) The Customer is required to provide a minimum of three ducts for each NES transformer. The conduit shall extend from the vault to the manhole specified by CE. Customer shall coordinate installation of conduit with NES Construction Crews. NES shall terminate conduit in NES handhole, manhole, or vault.
(b) Customers choosing to connect to the NES system at a location other than the
NES preferred location shall be responsible for construction of additional
required facilities, in accordance with NES guidelines.

5.2.3 *Vaults* shall be constructed in accordance with the current issue of the **NES Vault
Design Guide**.

5.2.4 Service Entrance Cables

(a) *Service entrance cables* shall be copper with insulation rated for *wet
locations* and a temperature rating of at least 90°C.

(b) Cables shall be installed in multiple runs of 500 kcmil unless otherwise
specified in writing by CE.

(c) Customer shall coordinate the installation of cables with NES Network
Crews. Customer shall not open or enter NES handhole, manhole, or vault.

(d) 216Y/125-volt services: When *service entrance cables* exceeding 100 feet are
paralleled, the Customer shall furnish NES *approved* cable limiter type fuses
to be installed on each end of each *service entrance phase cable*. Fuses shall
be installed by the Customer at the *service equipment*, and by NES at the
service point.

(e) 480Y/277-volt services: The Customer shall furnish NES *approved* cable
limiter type fuses to be installed on each end of each *service entrance phase
 cable*. Fuses shall be installed by the Customer at the *service equipment*, and
by NES at the *service point*.

(f) Fire pump services: Cable limiter type fuses shall not be installed on fire
pump services.

5.2.5 *Service equipment* shall be capable of interrupting the available fault current.

5.2.6 NES reserves the right to serve other Customers from equipment located in
Customer owned vaults, provided this does not interfere with the vault owner’s
electric service.

6.0 **TEMPORARY SERVICE**

6.1 Standard temporary service consists of 216Y/125-volt service, 3-phase, 4-wire, supplying a
load of 200 amps or less. Customer shall be responsible for installing *conduit* and *service
entrance cable* to the NES handhole, manhole, or vault as specified by CE.

6.2 Large temporary service (over 200 amps) consisting of 216Y/125-volt service, 3-phase, 4-
wire, may be available, but will require a longer time to design and a larger fee. Requests for
large temporary services should be made with ESE as early as possible.

6.3 Temporary service consisting of 480Y/277-volt service, 3-phase, 4-wire, is available, but
may require installation of a pad-mounted switch and transformer. Customer may
experience unexpected interruptions with this type of service.
7.0 METERING
7.1 Customer shall adhere to applicable metering requirements in the NES Electric Service Policies and Procedures.
7.2 Current transformers (CT’s) and potential transformers (PT’s) shall not be installed in a handhole, manhole, or vault.

8.0 SECURITY OF SERVICE ENTRANCE
8.1 The Customer’s service entrance shall be secured against unauthorized electrical connection.
8.2 When multiple services are tapped off of a common service entrance, such as in an incoming bus section with multiple mains, all removable and/or hinged covers shall be provided with a means for NES Metering Department to install seals and/or locks.

9.0 EMERGENCY POWER GENERATION SYSTEMS
9.1 Emergency power generation systems utilizing closed transition transfer switching equipment shall not be permitted by NES in the network service area.
9.2 Emergency power generation facilities shall comply with NES guidelines regarding safety, system protection, and operation. Emergency power generation facilities shall be accessible by NES for periodic inspections.

10.0 ALTERATIONS OR ADDITIONS TO CUSTOMER’S INSTALLATION
10.1 The capacity of NES electrical service to the Customer is based on information furnished by the Customer at the time of initial service design. Therefore, no significant additions or changes shall be made to the Customer’s installation without first notifying the proper inspection authority and providing NES with the information described in Section 2.0 of this document.
10.2 Additions or changes to the Customer’s installation may require facilities to be redesigned by both the Customer and NES.
10.3 Failure to provide this information may adversely affect the quality of service to the Customer and to other Customers served from the same NES facilities. Extreme cases may require disconnection of Customer’s electric service while corrective action is taken.

11.0 MODIFICATION OF EXISTING NETWORK INFRASTRUCTURE
11.1 The cost of modification or relocation of existing NES network infrastructure requested by the Customer will be charged to the Customer (estimated construction costs including appropriate overheads).
11.2 No relocation or replacement will be made unless suitable easements or property rights are provided without cost to NES.
12.0 RECOMMENDATION FOR INSTALLING DISTRIBUTED GENERATION ON THE
DOWNTOWN NETWORK SYSTEM

NES will not allow any connected Distributed Generation (DG) without first investigating the
operation and safety concerns. The limits for the amount of DG allowed will be determined on
a case-by-case basis.

NES requires a one year load study of the service or the customer must supply a load study of a
like design from another utility. A minimum demand will also be set per customer. NES
recommends that DG be allowed after review of a signed and stamped set of engineering plans
that demonstrate compliance with the conditions outlined below.

Basic Parameters:

(a) DG cannot produce more than 25% of the total power being consumed measured in real
time. This will also contain a minimum demand threshold.

(b) There must be a manual means of disconnect provided with access by NES field
personnel.

(c) The minimum service size must be greater than 800 Amps.

(d) A current version of “Smart Inverter” must be used by the customer. The 75/25 rule
would apply for load so the inverter output would not exceed 25% of the actual power
being consumed. The inverters must be able to detect the status of the NES network
protectors. 67% of the network protectors must be in service before the DG can
operate.

The customer must provide 2-1 ½” conduits from the inverter to the vault to a NEMA
4X box with SEL-2505 remote I/O monitor with multi-mode fiber option. The
customer shall also provide a communication cable from the inverter to the vault in one
(1) of the 1 ½” conduits, and provide a pull-string in the other 1 ½” conduit.

(e) NES requires trip control if the DG is to interconnect with NES.

(f) The DG shall be connected to the Normal Service Poles of an open transition transfer
switch. The Emergency Service Poles shall be connected to the utility power via a
fused switch or circuit breaker in the customer’s main switchboard. The automatic
transfer switch shall be rated for the appropriate ampacity and AIC rating.

(g) The DG inverter shall be an UL1741 / IEEE 1547 Island type inverter which does not
require a utility feed to operate.
APPENDIX A: GLOSSARY

Approved. Acceptable to the authority having jurisdiction.

Building. A structure that stands alone or that is cut off from adjoining structures by four-hour separation.

Cable. An insulated conductor suitable for carrying an electric current.

Collector Plate. A section of copper bus bar located in the NES vault, manhole or handhole, used as the connection point between NES facilities and the Customer’s service. In the case of a grid network service, the collector plate is used to connect the Customer to the NES secondary grid. In the case of a spot network service, the collector plate is used to parallel multiple network transformers with the Customer’s service.

Conduit. A structure containing one or more duct.

Conduit System. Any combination of duct, conduit, conduits, manholes, handholes, and/or vaults joined to form an integrated whole.

Duct. A single enclosed raceway for conductors or cables.

Electric Supply Equipment. Equipment that produces, modifies, regulates, controls, or safeguards a supply of electric energy.

Electric Supply Lines. Those wires, conductors, and cables used to transmit electric or light energy and their necessary supporting or containing structures, equipment, and apparatus that are used to provide public or private electric supply or lighting service.

Equipment. A general term including fittings, devices, appliances, fixtures, apparatus, and similar terms used as a part of, or in connection with, an electrical installation.

Handhole. An enclosure for use in underground systems, provided with an open or closed bottom, and sized to allow personnel to reach into, but not enter, for the purpose of installing, operating, or maintaining equipment or wiring or both.

Manhole. A subsurface enclosure that personnel may enter used for the purpose of installing, operating, and maintaining submersible equipment and cable.

Service Entrance. The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

Service Entrance Cable. The service conductors between the terminals of the service equipment and the service point.

Service Equipment. The necessary equipment, usually consisting of a circuit breaker(s) or switch(es) and fuse(s) and their accessories, connected to the load end of service conductors to a building or other structure, or an otherwise designated area, and intended to constitute the main control and cutoff of the supply.

Service Equipment Ampacity. The sum total current-carrying capacity, expressed in amperes, of all service equipment for a service point. If fuses are used in the service equipment, the current-carrying capacity shall be based on the rating of the switchgear, not the fuses.
Service Point. The point of connection between the facilities of the serving utility and the premises wiring.

Structure. That which is built or constructed.

Vault. A structurally solid, isolated enclosure consisting of fire-resistant walls, ceiling and floor, above or below ground, where entry is limited to personnel qualified to install, maintain, operate, or inspect the equipment or cable enclosed. The enclosure may have openings for ventilation, personnel access, cable entrance, and other openings required for operation of equipment in the vault.

Wet Location. Installations underground or in concrete slabs or masonry in direct contact with the earth; in locations subject to saturation with water or other liquids, such as vehicle washing areas; and in unprotected locations exposed to weather.
Appendix B: Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Revision History</th>
<th>Approvals</th>
<th>Department</th>
<th>Initials</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 9, 2016</td>
<td>Added 12.0</td>
<td>Originated by Network Group</td>
<td>Reviewed by Departments with Input</td>
<td>Signed off after review</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matt Thomas</td>
<td>CE Standards</td>
<td></td>
<td>9/22/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ronald Reasonover</td>
<td>CE Network</td>
<td></td>
<td>9/22/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ron Davidson</td>
<td>CE Network</td>
<td></td>
<td>9/23/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nick Thompson</td>
<td>CE Manager</td>
<td></td>
<td>10/1/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Don Hill</td>
<td>V.P. Engineering</td>
<td></td>
<td>10/7/16</td>
</tr>
<tr>
<td>May 1, 2015</td>
<td>Update Paragraphs: 3.1.5: Appendix-Glossary</td>
<td>Originated by Network Group</td>
<td>Reviewed by Departments with Input</td>
<td>Signed off after review</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jon Sipes</td>
<td>CE Network</td>
<td>JS</td>
<td>4/28/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ronald Reasonover</td>
<td>CE Network</td>
<td>RR</td>
<td>4/28/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ron Davidson</td>
<td>CE Network</td>
<td>RD</td>
<td>4/28/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nick Thompson</td>
<td>CE Manager</td>
<td>NT</td>
<td>5/12/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wes Allen</td>
<td>V.P. Engineering</td>
<td>WA</td>
<td>5/18/15</td>
</tr>
<tr>
<td>March 5, 2007</td>
<td>Original Issue. Guidelines specific in Network Area</td>
<td>Originated by Network Group</td>
<td>Reviewed by Departments with Input</td>
<td>Signed off after review</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sally Dunn</td>
<td>CE Network</td>
<td>SD</td>
<td>2/23/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jeremy Hitchcock</td>
<td>CE Network</td>
<td>JH</td>
<td>2/23/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ron Davidson</td>
<td>CE Network</td>
<td>RD</td>
<td>2/23/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bob Simpkins</td>
<td>C&M</td>
<td>BS</td>
<td>2/23/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chuck Reinitz</td>
<td>C&M</td>
<td>CR</td>
<td>2/23/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frank Spickler</td>
<td>C&M</td>
<td>FS</td>
<td>2/23/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dwight Tidwell</td>
<td>Energy Services</td>
<td>DT</td>
<td>2/24/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jim Purcell</td>
<td>Energy Services</td>
<td>JP</td>
<td>2/24/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nick Thompson</td>
<td>CE Manager</td>
<td>NT</td>
<td>2/25/07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paul Allen</td>
<td>V.P. Engineering</td>
<td>PA</td>
<td>3/5/07</td>
</tr>
</tbody>
</table>